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ONE APPROACH TO SOLVING REVERSE 

PROBLEMS OF HEAT CONDUCTION 

Yu. M. Matsevityi UDC 536.24 

Ways are proposed to identify the thermophysical parameters in nonstandard situa- 
tions (heat transfer in the case low external thermal resistances, thermal con- 
ductivity of thin coatings). 

The class of reverse problems of heat conduction is rather large, it includes external 
or boundary problems (determination of boundary conditions from the known mathematical model 
and available data on the temperature field in the given object), internal or coefficient 
problems (identification of thermophysical characteristics from available data on the boun- 
dary conditions and the temperature field), geometrical problems (determination of the geo- 
metrical characteristics of a thermal object), model or inductive problems (refinement of 
the mathematical model), and finally time or retrospective problems where the initial or 
simply earlier thermal state is to be determined from available data on the process at later 
instants of time. 

~le need to formulate these problems arises from the great difficulties encountered in 
experimental determination of aforementioned thermophysical parameters and by a natural 
desire to utilize methods of mathematical simulation for their identification. 

Institute of Problems in Machine Design, Academy of Sciences of the Ukrainian SSR, 
Kharkov. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. 6, pp. 1119-1123, 
December, 1981. Original article submitted September 16, 1980. 

1384 0022-0841/81/4106- 1384507.50 �9 1982 Plenum Publishing Corporation 



In the solution of reverse problems of heat conduction there arise difficulties, some 

related to the purel~ technical and methodological aspects of organizing the calculation 
process, others related to the fundamental nature of the problem. Difficulties of the latter 
kind arise because reverse problems belong in the category of ill-conditioned ones [i, 2] 
and, consequently, their solutions are usually not regular (they may be ambiguous, noncon- 
vergent, unstable). Nevertheless, experience in solution of reverse problems with the aid 
of electrical models [3-5] indicates that in almost all problems solved so far these depar- 
tures from regularity have been avoided. 

This "regularization" of solutions in working with electrical models must not be regard- 
ed as characteristic of treatment of reverse problems, inasmuch as this effect is only a 
consequence of analog devices being less precise than digital computers. The limited preci- 
sion of electrical models prevents the solution from falling into the window of possible 
stability loss, the diameter of this window being determined by the maximum measurement 
error (converted to dimensions of the sought parameters), so that the solution remains 
stable. In this way, the drawback of analog devices is in a sense turned to an advantage 
for solution of reverse problems. When the emphasis is not on the means of solving ill- 
conditioned problems, however, then one must, of course, consider all elements of irregular- 
ity of their solutions and especially so on account of the rather high precision of general- 
purpose digital computers used by most researchers for the solution of such problems. 
Solution of ill-conditioned problems generally requires the use of regularization proce- 
dures or the introduction of constraints under which the solutions will be regular. A 
special case in this sense is the so-Called pseudoreverse problem of heat conduction, where 
the heat-transfer coefficient and the temperature of the medium or the thermal flux at the 
surface of a body are sought from known temperatures at points on that surface. It has been 
demonstrated [2] that such a problem is well-conditioned and its solutions are regular. 
It thus seems logical to reduce an ill-conditioned reverse problem of heat conduction to a 
well-conditioned pseudoreverse problem, which will make it unnecessary to test the solutions 
for uniqueness and stability. We will demonstrate here that this can also be done in the 
case of an external reverse problem of heat conduction. 

Let us consider an infinitely large flat plate (Fig. i) made of a material with a ther- 
mal conductivity X and known boundary conditions at one of its surfaces (at point A), the 
heat-transfer coefficient ~ at its other surface (at point D) to be determined from the tem- 
perature inside the plate (at point B a distance 6 away from point D) and the temperature 
Tm of the ambient medium. 

We assume that the other boundary surface passes not through point D but through point 
B. Then determination of the heat-transfer coefficient at that surface (we will call it a 
fictitious heat-transfer coefficient ~f) will be a pseudoreverse problem, inasmuch as the 
surface temperature (TB) is known. 

The fictitious external thermal resistance (i/~f) obtained from the solution to this 
pseudoreverse problem is, naturally, higher than the true thermal resistance i/u, since it 
also includes the internal thermal resistance 6/% of the discarded layer. Therefore, i/~ = 
(i/~f) -- ~/X, and the true heat-transfer coefficient in the steady-state is 

~:1/(  1 8) (i) 

~f 
The proposed procedure for reducing an external reverse problem of heat conduction to a 
pseudoreverse one is applicable not only to one-dimensional problems but also to more com- 
plex ones, if the thermal flux is a priori known to be normal to the surface where the boun- 
dary conditions are to be identified. 

It is often necessary to determine the heat-transfer coefficients in high-intensity 
processes at a surface. In turbine engineering, for instance, the problem of determining 
these heat-transfer coefficients ~ is particularly important in the design of turbines for 
atomic electric power plants. Components of such turbomachines must operate under intricate 
conditions of direct contact with wet steam, under conditions where the heat-transfer coef- 
ficients increase sharply while the external thermal resistance tends to decrease to zero. 
In these cases identification of the heat-transfer coefficients through solution of the 
reverse problem of heat conduction with the aid of analog devices becomes difficult on 
account of the low precision of the latter (they must handle infinitely large and infinites- 
imally small quantities here). For this reason, in the case of high-intensity heat transfer 
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Fig. 1 

~ PM2 

Fig. 2 
Fig. i. Reduction of reverse problem of heat con- 
duction to a pseudoreverse one. 

Fig. 2. Schematic block diagram of the device 
for determining the thermal conductivity of thin 
coatings. 

at a surface, it is expedient to identify the boundary conditions also by way of determining 
the fictitious heat-transfer coefficient ~f (or the fictitious external thermal resistance 
i/~f) at some tentative boundary at a distance ~ from that surface. The fictitious heat- 
transfer coefficient obtained through solution of the reverse problem will be smaller than 
the true heat-transfer coefficient a, which tends to become infinite. One can always match 
the distance ~ so that af (and thus also i/~f) will be finite and can be calculated with 
the aid of analog de.vices by methods of solution of reverse problems. Most expedient, on 
the basis of the concepts presented here, would be to shift the boundary so that it will 
pass through the point where the temperature is known, i.e., so as to make the problem a 
pseudoreverse one and the solution regular (stable). 

Such an approach can also be taken to solution of an internal reverse problem of heat 
conduction involving identification of the thermal conductivity of objects so small that it 
is practically impossible to measure their temperature. Such objects are thin films, for 
instance, widely used for some time now either as principal devices or as coatings on other 
materials. 

The materials of these films (coatings) belong generally in the category of new mate- 
rials with unknown properties which moreover, owing to the thickness limitation, depend on 
the thickness as well as on the mode of deposition on the substrate. It therefore is 
extremely important to know how to determine the thermophysical properties of coatings from 
readings of the substrate temperature, especially since, as has been just mentioned, measur- 
ing the temperature of coatings themselves is often impossible. 

We will show how the thermal conductivity of a thin film (coating) can be determined 
through a parallel solution of two external reverse problems. When the solution of these 
problems yields the heat-transfer coefficient for a body with coating (al) and without coat- 
ing (a2), then 

1/oq = 11o~2 4- 81L, (2) 
where ~ is the coating thickness. 

When the coating thickness is known, then the thermal conductivity can be determined 
from expression (2) according to the relation 

~=U( l~x~ ~x21 ) . (3) 

The researcher is sometimes interested in determining the thickness of a deposited film 
when the thermophysical properties of the material are known. Then, using the solutions to 
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the same two external reverse problems of heat conduction and expression (3), he can calcu- 
late the coating thickness as 6 =%(i/~i -- i/~2). 

Electrical simulation [6] can be successfully used for identification of % (or 6) of a 
coating and for identification of ~ in the case of high-intensity heat transfer. 

When electric potential and electric current are adopted as the analogs of temperature 
and thermal flux respectively, then we find that electrical resistance becomes the analog 
of thermal resistance. The device shown in Fig. 2 facilitates the determination of the 
thermal conductivity of a coating material from the results of two experiments performed 
under identical conditions for the same body with and without the coating respectively. 
For this purpose, the device includes two passive models PMI and PM2 which are either resis- 
tance networks or made of electroconductive paper. Signals at the nodal points of these 
passive models are fed to the inputs of comparator modules MCI and MC2, at the second inputs 
of which there appear voltages coming from voltage divider DV and proportional to the mea- 
sured (in the two experiments) temperatures at corresponding points of the simulated body. 

The mismatch signals are transmitted from the outputs of the comparator modules to the 
inputs of control modules C~il and CM2, which adjust the controllable resistors CRI and CR2 
till the mismatch pulses vanish, which will signify that the solution of the reverse prob- 
lems is completed, i.e., the magnitudes of the adjustable resistances correspond to the ther- 
mal resistances i/~i and i/~2, respectively. The voltages proportional to these thermal 
resistances appear at the inputs of the adder--subtracter AS, its output signal proportional 
to the difference i/~i -- i/~2 being fed to the input of divider module DH and at the second 
input of the latter appearing the output voltage of the voltage divider proportional to the 
coating thickness 6. As a result, a signal is generated at the output of the divider module 
which corresponds to the thermal conductivity of the coating material %. By varying the 
temperature of the ambient medium and measuring the electric potential at the model boundary, 
which corresponds to the temperature at the body boundary, we can obtain the % = f(T) rela- 
tion for a given coating material. 

The block diagram in Fig. 2 can, if desired, be converted to the block diagram of the 
algorithm of solution of this problem with the aid of a digital computer. 

Thus, the proposed approach to solution of reverse problems of heat conduction, by 
reducing the problem in many cases to a well-conditioned one, makes it possible to obtain 
stable solutions without the need for other regularization procedures. It furthermore makes 
it possible to identify thermophysical parameters when their determination by other methods 
is either difficult or altogether impossible. 

NOTATION 

~, heat-transfer coefficient, W/(m2.~ %, thermal conductivity, W/(m-~ 6, thick- 
ness, m; T, temperature, ~ subscript m, ambient medium; and subscript f, a fictitious 
quantity. 

LITERATURE CITED 

i. A.N. Tikhonov and V. Ya. Arsenin, Methods of Solving Ill-Conditioned Problems [in 
Russian], Nauka, Moscow (1979). 

2. O.M. Alifanov, Identification of Heat Transfer Processes in Aircraft [in Russian], 
Mashinostroenie, Moscow (1979). 

3. L.A. Kozdoba, Solutions to Nonlinear Problems of Heat Conduction [in Russian], Naukova 
Dumka, Kiev (1976). 

4. Yu. M. Matsevityi, Electrical Simulation of Nonlinear Problems in Engineering Thermo- 
physics [in Russian], Naukova Dumka, Kiev (1977). 

5. Yu. M. Matsevityi, V. E. Prokof'ev, and V. S. Shirokov, Solution of Reverse Problems 
of Heat Conduction with Electrical Models [in Russian], Naukova Dumka, Kiev (1980). 

6. Yu. M. Matsevityi, "Device for simulating the thermal conductivity of thin films," 
Inventor's Certificate No. 752,383, Byull. Izobret., No. 28 (1980). 

1387 


